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Abstract. The use of linear optimisation for the construction of economic
plans was �rst introduced by Kantorovich[1, 2] with an algorithm similar to
those later developed in the West by Danzig[3, 4]. In recent years linear op-
timisation packages have become readily available on desktop computers, an
example being the lp-solve system[5]. In this paper I �rst show how the lp-
solve package can be used to construct macro-economic plans starting from
information in IO table. I then examine the empirical computational com-
plexity of the package in dealing with this sort of problem. This will show
that the complexity is too great to allow the package to be applied to highly
disaggregated IO tables.

As an alternative to lp-solve I explain the Harmony Algorithm[6] and
how that can be extended to the problem of multi-year plans. Performance
measurements are given which indicated that the Harmony algorithm has a
markedly lower computational complexity than lp-solve, making it more suit-
able for highly disaggregated plans.

1. The plan problem

Kantorovich de�nes the plan problem as to �nd a way to combine a �nite number
of techniques along with a pre-given vector of resources in order to maximise the
full�llment of a plan target. The target itself was speci�ed in terms of a vector that
speci�es the mix of outputs to be produced. For example a plant producing car
engine parts might have to maximize the output supplied in the �xed proportions
N engine block, 4N pistons plus N crank shafts. A technique, in his terms, was
a linear combination of resources that produced an output in �xed proportions.
Given appropriate data about sales of consumer goods and planned state purchases
of public goods, the entire operation of the productive economy could be de�ned
in these terms.

Given such a plan speci�cation, the Kantorovich's algorithm gave the minimum
resource using combination of techniques. The answer provided by his algorithm
was the relative intensities with which each technique should be used.

During the 1960s when Kantorovich was working the problem of macro-economic
planning, computing resources were far less developed than today, and the prepa-
ration of detailed plans for a whole economy using his techniques was not possible.
More recently the entrepreneur Jack Ma who founded Alibaba has revived the
idea[7], claiming that with big data, networks and modern computing it should be
possible to have detailed real-time planning of the Chinese economy. For this to
be feasible in an economy as big as China, the computational complexity of the
calculations have to be tractable.

What do we mean by tractable in this context?
Normally we treat an algorithm as tractable if it is of polynomial order, but when

dealing with very large datasets, we require the stronger constraint that the run
time be bounded by a low order polynomial. Unfortunately, that does not appear
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to be the case with the linear programming algorithms descended from the work of
Kantrovich.

2. Performance of lp-solve for economic planning

As a test we produced an macro-economic planning front end to the widely used
lp-solve package. The package1 allows one to experiment with macro-economic
planning. Using it one can compute multi-year plans for either toy economies, or
in principle, it can be applied to compute sectoral plans for whole economies using
input output tables. It is intended to be run in a Linux environment, from the
command line. It takes data in spreadsheet form allowing published national IO
tables to be used as the starting point for feasability studies.

It is invoked thus:

java planning.nyearplan flow.csv cap.csv dep.csv targ.csv > plan.lp

The spreadsheets are supplied in comma separated value (.csv) form, a widely used
exchange format. First comes a �ow input/output table in standard column format
called, in the example, flows.csv.

Suppose this contains

We are dealing with a simple economy that produces iron,coal,corn and bread.
This is a standard format, albeit tiny, input output table. Read down the iron
column. Right down at the bottom you see an output row. This says that at the
start the economy produces 10 units of iron, and to make that iron it uses 0.1 unit
of existing iron, and 2 units of coal plus 0.3 units of labour. Dont worry what the
units are for the moment. In principle they can be anything, tons, kgs cubic feet
etc, provided that each type of product is consistently measured in its own unit.
So you could measure iron in million kg, coal in million lbs, bread in thousands
of loaves etc, so long as each mention of iron in the tables is always in million kg,
each mention of coal is in million lbs etc. Similarly to produce 5 units of coal, the
economy uses up 1 unit of labour and 1 unit of coal. For each industry you have a
column describing how it is made, and each row represents intermediate uses of a
given product.

All of these are �ows of intermediate products. That is to say �ows that are
immediately used up as raw materials. The �ows do not include �ows to replace
capital stock used up. For that we need two more tables. The next is the capital
stock table, cap.csv,

This says that to produce the current output of iron, we need a capital stock
of 10 units of iron ( think big machines ), and a bu�er stock of 2 units of coal �
think piles of it in the ironworks. These are not �ows, these are the stocks needed

1both the lp-solve package and the more advanced harmony package are available at
https://github.com/wc22m/5yearplan
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to continue production. Note that there is no output or labour row for this table,
since the labour and the output are assumed to be the same as in the flows.csv

table. However capital stocks wear out. And some stocks wear out more quickly
than others. A van, for example, wears out faster than a railway locomotive. So
a long term plan needs to know how fast each type of product wears out. This is
speci�ed in the depreciation table dep.csv, which in our example contains:

This table tells you the rate at which the stock of each type of means of produc-
tion depreciates each year. So 0.07 or 7% of the iron used to make iron wears out
each year, whereas the bu�er stock of seed corn to make corn, deteriorates much
faster, half of it is lost per year. Finally we have a table labtarg.csv, that speci�es
the target outputs and available labour force each year of the plan.

These specify the target levels of �nal consumption of each product each year. It
is important to note that this is not the total output, since that would also include
outputs of raw materials and replacement capital goods. Instead we specify the
plan in terms of the output available for consumption. So in the �rst year we want
0.1 unit of iron for direct consumption � knives and forks, pots and pans, 3 units
of coal for heating and cooking, and 2 units of bread. The labour force available
to the economy will be 3. The following year the labour force has grown by 0.01
to 3.01 and, with this larger labour force we aim to produce slightly more bread.
And so on for each year. You can add or remove years from the plan by editing the
table.

The planning algorithm seeks to maximize the ful�llment of these plan targets
for each year of the n year plan. I does this by generating a programme for the
lp-solve language which is printed on the standard output stream.

It is made up of a long series of inequalities preceded by a maximisation objective.
In this case it starts out

max:targetFulfillmentForYear1 +targetFulfillmentForYear2

+targetFulfillmentForYear3 +targetFulfillmentForYear4

+targetFulfillmentForYear5;

.....

It is attemptint to maximise the sum of the individual year plan ful�llments. For
each year the plan ful�llment is speci�ed in terms of meeting a speci�ed ratio of
outputs. Since the target was to produce at least 0.1 of a unit of iron, exact
full�lment of the plan can not be greater than 10 times the �nal consumption of
iron in year 1, with similar rules for coal and bread.

targetFulfillmentForYear1 <=10.0 finalConsumptionOfiron1;

targetFulfillmentForYear1 <=0.333 finalConsumptionOfcoal1;

targetFulfillmentForYear1 <=0.5 finalConsumptionOfbread1;
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Initial resources are speci�ed as other constraints. So the labour available has to be
≥ the labour used in each industry, and ≤ than the pregiven supply for the year.
Similar constraints apply to the pre allocated stocks of capital goods. It is assumed
that these are �xed capital, ie, they can not be transfered between industries.

labourForYear1>= labourForiron1 +labourForcoal1

+labourForcorn1 +labourForbread1;

labourForYear1<= 3.0;

outputOfiron1<= 1.0 capitalstockForironMadeUpOfiron1;

outputOfiron1<= 100.0 flowForironOfiron1;

Additional rules stipulate what is to be done with the output:

accumulationOfcoal2>=accumulationForironOfcoal2

+accumulationForcoalOfcoal2

+accumulationForcornOfcoal2 +accumulationForbreadOfcoal2;

productiveConsumptionOfcoal2>= flowForironOfcoal2

+flowForcoalOfcoal2

+flowForcornOfcoal2 +flowForbreadOfcoal2;

finalConsumptionOfcoal2<=outputOfcoal2 - accumulationOfcoal2

-productiveConsumptionOfcoal2;

The rules for depreciation and capital accumulation serve to tie together the plans
for di�erent years thus

depreciationIncoalProductionOfcoal2 =0.5 capitalstockForcoalMadeUpOfcoal2;

capitalstockForcoalMadeUpOfcoal2<=capitalstockForcoalMadeUpOfcoal1

+ accumulationForcoalOfcoal1

- depreciationIncoalProductionOfcoal1;

Assume that the linear optimisation program has been stored in the �le plan.lp

we can run the program thus

lp_solve <plan.lp|sort >plan.txt

The �nal solution to the plan, is given in a fairly verbose and self descriptive format,
which speci�es the output for each product each year, the amount of investment of
each type in each industry each year, the labour employed etc.

3. Complexity of lp-solve

The complexity of a planning problem will clearly depend on how many products
are being tracked and on the time period over which the plan is to run. To evaluate
this tests were performed using input output models of increasing size and varying
number of years of plan horizon.

The models were synthetically generated using random number generators and
were structured to ensure that they were all economically feasible - that is to say the
IO tables all produce a material surplus product. It is known that IO tables grow
in sparseness as they become increasingly disagreggated[8]. Since the nyearplan

software takes advantage of sparsity, only generating constraints associated with
non-zero matrix cells, it is important that the test models show the N logN growth
in the number of non-zero cells that has been observed in real tables. The random
IO table generator is thus set up to produce tables with this statistical property.

Measurements show that the lp-solve system has a complexity order of N3

where N is the number of industries. With respect to plan horizons, a 2 year with
N industries takes about 6.5 as long to evaluate as a one year plan, a 5 year plan
takes about 72 times as long. The overall complexity seems to be of the order of
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Figure 3.1. The run time of lp-solve for economic planning ap-
pears to be of order N3. Performance was measured on and small
Odroid micro computer running Ubuntu.

Table 1. Projected time to compute large plans with lp-solve

industries 1 year plan 5 year plan

500 0.24hr 17hr
5000 11 days 2.2 years
50000 33years 2417years

N3Y 2.6 with Y the number of years. This is polynomial but of a su�ciently high
order as to make large models as shown in Table 1.

Whilst the linear solver used in lp-solve is practical for macro economic planning,
it would be impractical for detail planning. The tests were done on a single 64 bit
ARM core running at 1.6Ghz. Parallelism of the sort available in modern super
computers would allow the times to be massively reduced, but it is far preferable to
start o� with a less complex algorithm. The relatively poor performance of standard
linear optimisers on disaggregated plans was known to Soviet economists.This result
presumably lay behind the data cited by the late Prof Nove in his book[9] where he
gives astronomically long times for computers to construct optimal plans for whole
economies. But that does not exclude the possibility that there may be iterative
algorithms of low complexity that can achieve a good result on the same problem.

There is a long history of debates by economists on the feasibility of planned
economic calculation[10, 11, 12, 13, 14, 15, 16, 17]with one school asserting it was
feasible, another saying it was impossible. But given that any explicit calculation
or algorithm that humans can do, can also, in principle be done by computers.
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Given further, that the complexity order of an algorithm does not change depend-
ing on whether people do it by hand or a computer does it. It follows then that
the existence of functioning market economies is proof that low complexity coor-
dination algorithms exist. It is clearly not the case that market economies depend
on an algorithm of order N3 or they would never have grown to be able to produce
the hundreds of millions of products[18] that actually are on sale. The Harmony
Algorithm[6]draws on ideas from marginalist economics and from neural nets[19]
to derive an iterative planning technique. This has previously been shown to have
N logN complexity for single year plans. Here we present an implementation suit-
able for multi-year plans.

4. The Harmony Algorithm

The algorithm takes the plan problem as de�ned by Kantorovich. In the current
implementation the interface is identical to that used in section 2.

A technique is de�ned as producing speci�ed amounts of one or more outputs,
using speci�ed amounts of one or more inputs, which we can represent as:

(4.1) P : a1x1, a2x2, a3x3,, ...→ p1y1, p2y2, P3y3, ...

so that technique P uses a_1 units of input x1, a2 of x2 etc to produce p1 of
output y1 etc.

Clearly, if we only use one output, any Leontief form IO table can easily have
its columns represented as such techniques. In the algorithm products and inputs
yi, xj are assigned index numbers for identi�cation. A given product may appear
both as an output of one technique and the input to other techniques, it may be
pre-given resource or an item of �nal consumption that never appears as an input.

Time periods can be linked by investments or by the persistence of capital goods
between periods. One way to represent capital goods persistence, described by
Sra�a[20], is to describe every production process as outputing partially used capital
goods as joint products. Thus a technique operating in time period t0 might produce
a main product to be consumed in this period along with a set of partially used
capital goods to be available in period t1. Alternatively one can model investment
in time t0 as producing capital goods available for use in periods t1..hwhere h is
the depreciation horizon. In either case joint production techniques and as a result
for years t2.. we have multiple alternative techniques which can supply the capital
goods: investments in t0, t1. The combination of joint production and multiple
techniques was not present in the original published algorithm. This is relevant,
because questions have been raised[21]as to whether the Harmony Algorithm is
applicable in these cases.

The key feature of the algorithm is that instead of specifying a hard rule that
plan outputs should be supplied in �xed proportions a function, called the Harmony
function, is used to weight deviations from �xed proportionality of output.

The Harmony function is supposed to mimic the principle of positive but di-
minishing marginal utility. What is required is a function whose value rises as
plan full�llment approaches but which rewards overfull�lment less than it punishes
underful�llment. As implemented the function is

(4.2) h(t, n) =

{
S − S2

2 S < 0

ln(S + 1) S ≥ 0

where
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Figure 4.1. Harmony function for a planned output of 2 units.
Note Harmony =0 when plan is on target.

(4.3) S =
n− t
t

and t is the plan target, and n the net output of the corresponding product. The
shape of the function is shown in Figure 4.1. It is continuous, has a positive �rst
and a negative second derivative. Given a technology complex C, a plan ray P , a
vector of initial resources R and an initial intensity vector I specifying the scale of
production of each of the techniques it is simple to compute the net output vector
N and from this we derive the Harmony vector H and the harmony gradient vector
∇H. For non-�nal goods the harmony derivative is obtained from the mean of the
harmony derivatives of the goods they contribute to multiplied by their marginal
physical product in each context.

For each production technique p we derive a harmony gain rate per production
cycle Gp which is given by

(4.4) Gp =

∑
pidh/dyi −

∑
ajdh/dxj∑

ajdh/dxj

where the pi, ai are the production and use coe�cients in eqn. 4.1. This harmony
gain rate per cycle is a computational analogue of the rate of return on capital.

The algorithm iterates around three steps:

(1) A Newton Raphson phase which estimates the mean harmony µHand at-
tempts to move the scale of production of all industries towards the level
at which they would be operating at mean harmony. Industries i with
hi < µH are expanded the others are shrunk. Intercepts with the mean are
determined using the gradients ∇H and a scaling factor ψ < 1 is used to
move the industries part way towards the mean. The adjustment of any
one industry will have second order e�ects in terms of the plan full�lment
of raw materials and intermediate products it uses up.

(2) A hill creep phase analogous to the movement of capital in a market econ-
omy towards those branches where the rate of return is highest. The in-
tensity I of each technique j is adjusted such that Ij = Ij × (1+ σ(Gj)φψ)
where φ < 1is another rate control constant and σ(x) is a sigmoid function
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Figure 4.2. A comparison of the performance of the lp-solve and
Harmony based plan solvers. Note that the Y axis is a log scale.
Tests run on an AMD A12 with a 1Ghz core clock using Ubuntu
under VirtualBox with 2 cores available.

to map −∞..∞ into the range −1..1. A suitable sigmoid function is

(4.5) σ(x) =


x

1+x x > 0

0 x = 0

−σ(−x) x < 0

(3) A �nal consistency adjustment phase to make sure that there is not a
negative net product of any type. For this the vector of net products is
searched for negative values. If any are found then the relative scale of use
reduction that would be required to remove the de�cit is calculated. All
techniques which use the product are then scheduled be reduced by at least
this amount. If a technique is scheduled to be reduced by 5% due to a
shortage of coal and 4% due to a shortage of iron, then the total reduction
will be 5% not 9%.

Intialisation. The intensity of all processes is initialised to 20% and initial capital
stocks for each non zero capital matrix for each year are derived from the approari-
ately depreciated initial stocks. For each year other than the last, an accumulation
technique is de�ned which consumes one unit of the appropriate capital type in year
t and delivers one unit of the appropriate type of capital, appropriately depreciated,
each subsequent year. As with the linear programming solver described in section
2, it is assumed that the capital stocks are �xed and not redeployable outside of
the sector in which they were originally invested.

Results. For both the lp-solve and the Harmony based planning algorithm timings
exclude the initial reading in and parsing of the IO tables. The Harmony solver is
so fast that computation time is completely dwarfed by the IO time otherwise on
large examples. Results are shown in Figure 4.2. It is clear that over the range
of plans tested, the Harmony solver is very much faster than the lp-solve version.
From the graphs shown, it appears that the Harmony solver is, for a given number
of years, approximately linear in the number of industries being planned. More
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plausibly, it is of order N logN , but this is hard to distinguish given the range of
the dataset.

The input data format, using IO matrices, is very ine�cient for large numbers
of industries. The space taken up by the planning tables and by the printed results
grows as order N2. At present this limits the number of industries worked with to
under 1000 for practical purposes. Above that level one runs out of heap space in
the java module that parses spreadsheets.

From the standpoint of the underlying planning algorithm that is not a problem.
Given data provided in a more compact form, for example from relational databases,
space would not be a problem until much larger numbers of products or industries
are encountered, since the storage used for the actual calculation grows only in
proportion to the non-null entries in the production matrix. This indicates that
were only two cores of the same power as used earlier available, a 50,000 industry
5 year plan could be optimised in under ten minutes, which compares favourably
with Table 1.

Use on larger scales would be helped by massive parallelism, but the algorithm
is well suited to this. Each of the steps of the main algorithm may be run in
data parallel mode provided that all cores synchronise access to the shared vectors
I,H,∇H between steps.

Overall we conclude that given the resources available to the Chinese computing
industries, the objectives set by Mr Ma, are indeed technically feasible.
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